Невозможно за конечное время довести температуру тела до абсолютного нуля.
Абсолютный ноль — это одна из концепций с интригующим названием и обманчиво простым определением. До наступления эры квантовой механики определение абсолютного нуля действительно было предельно простым. Молекулярно-кинетическая теория выявила статистическую связь между движениями атомов и молекул и температурой, и природу температуры стало возможно представить наглядно: чем быстрее движутся молекулы, тем выше температура, и наоборот. При такой картине нетрудно догадаться, что имеется нижний предел температуры, по достижении которого атомы и молекулы перестают двигаться окончательно. Значение абсолютного нуля оказалось равным –273°C.
В рамках квантовой механики значение абсолютного нуля не изменилось, однако в корне изменилось наше представление о том, как ведут себя атомы. Если бы атомы просто остановились как вкопанные, мы бы, в таком случае, могли одновременно измерить их скорость и местоположение с абсолютной точностью, а это — нарушение принципа неопределенности Гейзенберга. Поэтому даже при абсолютном нуле атом должен представляться нам слегка расплывчатым, если использовать волновое представление о нем, или слегка колеблющимся, если использовать корпускулярную концепцию. Поэтому нам следует говорить, что при абсолютном нуле атом не прекращает всякое движение, а лишь приходит в такое колебательное состояние, при котором он более не способен отдавать энергию вовне (такая остаточная энергия атома называется энергией нулевой точки). Конечный же итог, с макроскопической точки зрения, остается неизменным: имеется минимальное значение возможной температуры вещества, и оно равно всё тем же –273°С.
На самом деле, существование энергии нулевой точки хорошо иллюстрирует весьма интересный момент в квантовой теории. При стремлении температуры к абсолютному нулю волновая природа материи (см. Уравнение Шрёдингера) становится всё очевиднее и важнее, а квантово-механические эффекты начинают преобладать над эффектами классической механики, при которых атом ведет себя подобно бильярдному шару.
Так получилось, что –273°С — единственная температура, фигурирующая в фундаментальных физических законах. Она же используется и в определении температурной шкалы Кельвина, которая в основном используется в точных науках. За ноль в ней принимается абсолютный ноль, а единичное деление шкалы принимается равным 1° по привычной шкале Цельсия. Таким образом, по шкале Кельвина абсолютный ноль равен 0 К, точка замерзания воды приходится на 273 К, а комнатная температура составляет около 300 К.
Третье начало термодинамики просто констатирует, что абсолютный ноль недостижим — и в этом он похож на скорость света: материальное тело может сколь угодно близко подойти к нему, но достичь — никогда. Дело в том, что чем ближе система подходит к абсолютному нулю температуры, тем больше работы нужно затратить на ее дальнейшее охлаждение. На самом деле, в лабораторных условиях ученым удавалось получать температуры предельно близкие к нулевой. Сегодня температуры, отстоящие от абсолютного нуля на миллиардные доли градуса, можно получить практически в любой криогенной лаборатории.
Способов понижения температуры материального тела имеется достаточно много. Можно испарять жидкость с его поверхности, и она будет отнимать теплоту у тела — именно поэтому люди потеют в жару. Можно резко расширять газ, находившийся под высоким давлением, — вот почему охлаждается аэрозольный баллончик, когда вы долго выпускаете из него содержимое. Подобными методами ученые доводят температуру до уровня нескольких градусов выше абсолютного нуля. Однако чтобы получить по-настоящему сверхнизкие температуры, приходится надолго подвешивать незначительное количество атомов вещества в сильных электростатических и магнитных полях. После этого подвешенные атомы обрабатываются лазерным лучом определенной длины волны, который сначала заставляет атомы испустить остатки энергии возбужденных электронов в виде световых квантов, а затем — разогнать атомы врозь, как бы распрыскать их из аэрозольного баллончика. Именно так сегодня получаются температуры порядка нескольких нанокельвинов (1нК = 10–9 К). Однако, как далеко ни пошло бы развитие нашей техники, третье начало термодинамики говорит нам, что мы не только не перейдем барьера абсолютного нуля, но даже не достигнем его.
Один физик с хорошим чувством юмора дал собственные формулировки трех начал термодинамики:
Первое начало термодинамики: Вам не выиграть.
Второе начало термодинамики: Вам не сыграть вничью.
Третье начало термодинамики: Вам даже сыграть не дадут.
http://elementy.ru
|